

Estimating Electric Energy Consumed According to Penetration of Electric Vehicles in Jeju Island in Korea

Gae-Myoung Lee, Dean of Engineering College Su-Wan Kim Department of Electrical Engineering, Jeju National University, South Korea

- Brief explanation on estimating electric energy consumed due to penetration of EVs
- It is an example for Jeju province, the biggest island in South Korea.
- And then I hope to explain that penetration of EVs can lower the cost to supply electric energy in whole nation, and we can save energy and decrease greenhouse gas.

Co-organized by:

22-23 JUNE 2016

SITEC . BANGKOK

Introduction 2

- In 2011 year, the Jeju governor made plan to penetrate EV and replace all cars with EVs until 2030 year.
- In the plan:
 - 2017 year 10% EV penetration
 - 2020 year 30% EV penetration
 - 2030 year 100% EV penetration
- In university, the study on estimating electric energy consumed by EV according to EV penetration must be done.

Estimating Increase of Electric Energy According to Penetration of Electric Vehicles at the Jeju Island in Korea

The yearly total energy consumed by the EVs E_{\downarrow}

$$E = \sum_{i} \frac{N_i L_i}{\alpha_i} \times 365 \qquad (kWh)$$

where: .

₽

 α_i : fuel Economy (km/kWh), N_i : number of Electric vehicles, L_i : driving distance during a day (km),

Co-organized by:

22-23 JUNE 2016

Formally Expressed Fuel Economy of EVs in Korea

Model	Combined. Fuel Economy [km/kWh].	1-time Charging Driving Distance [km]	Curb Weight [kg]•	Release year₀
LEAF.	5.2*	132.00~	1,520.	2014.
Soul	5.0.	148.00.	1,508.	2014.
Spark EV.	6.0.	128.00.	1,240.	2014.
BMW i3.	5.9.	132.00.	1,300.	2014.
SM3 Z.E.	4.4.	135.00.	1,580.	2013.
Ray₀	Ray _e 5.0 _e		1,185.	2012.
Change.	Change _e 4.3 _e		8,400.	2012.

Co-organized by:

Predicted No. of EVs to be penetrated in Jeju Island

Year₊	Predicted No. of cars.			Goal of EV	Predicted No. of EVs.		
	Official .	Private .	Business .	penetra tion₀	Official	Private .	Business
2016.	<mark>698</mark> ₽	223,832.	38,083.	5.0%~	138.	11,192.	1,904.
2017.	735.	234,294.	40,971.	10.0%	175.	23,429.	4,097.
2018.	773.	244,756.	43,859.	16.0% .	213.	39,161 .	7,017.
2019.	810.	255,218.	46,747.	23.0%	250 _e	58,700.	10,752.
2020.	848.	265,680.	49,636.	30.0%	288.	79,704.	14,891.

Co-organized by:

Usage purpose₀	Daily driving Distance (km)
Official usage	36.5.
Non-business personal usage.	32.4.
Business usage.	101.7.

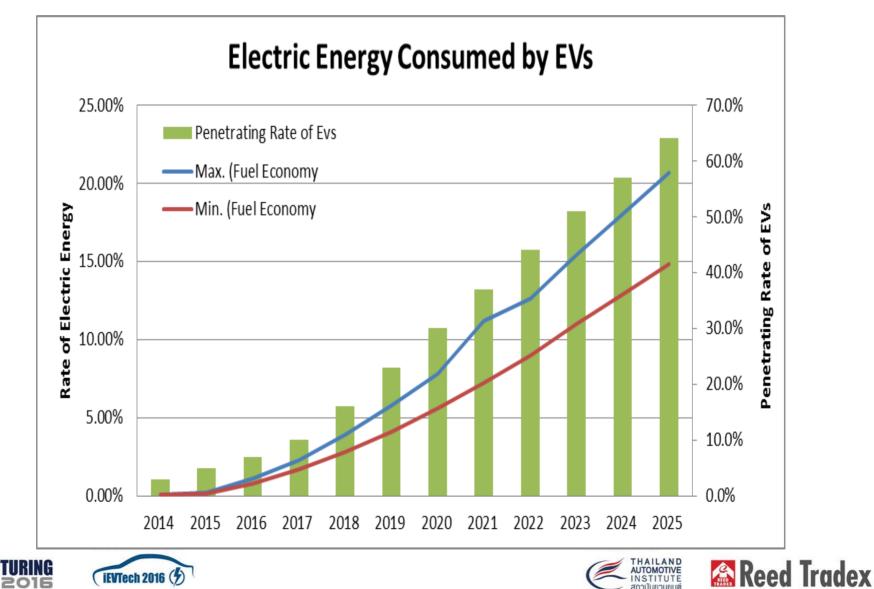
MANUFACTURING

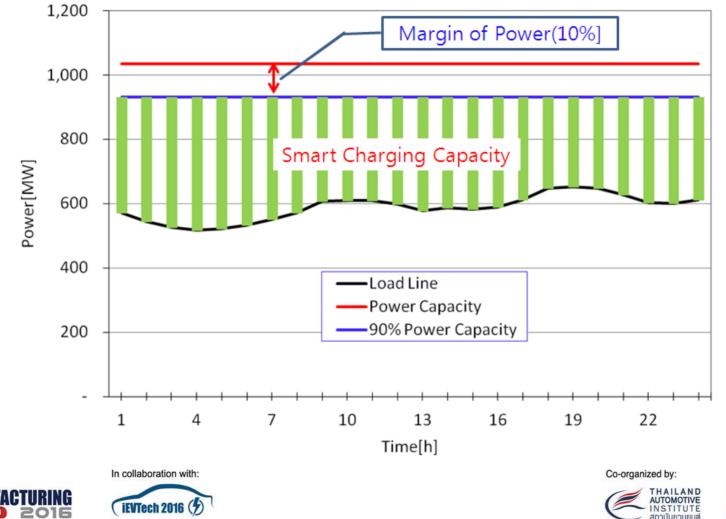
Co-organized by:

Estimation of the Electrical Energy Consumed by the EVs In Jeju Island

		Predicted Total	EV	Electric energy consumed by EV[<u>GWh</u>].		Electric energy rate consumed by EV[%]	
Yea	r₽	electric energy [<u>GWh</u>].	Penetration rate	Max. (Fuel Economy =4.3)	Min. (Fuel Economy =6.0).	Max. (Fuel Economy =4.3).	Min. (Fuel Economy =6.0)
201	6 ∉	4,161.	7.0%	47.6.	34.1.	1.1%	0.8%.
201	7 .	4,234.	10.0%	100.3.	71.9.	2.3%	1.7%.
201	8 ∉	4,314.	16.0%	168.9 ₽	121.0.	3.9% ₀∘	2.8%.
201	9 ₊	4,385.	23.0‰	255.0.	182.7.	5.8%	4.1%.
202	<mark>0</mark> ₽	4,435.	30.0‰	348.6 ₂	249.8.	7.8%	<mark>5.6‰</mark>
202:	5₽	4,405.	64.0‰	915.1 _*	<mark>655.8</mark> ₽	20.7‰	14.8‰ ~

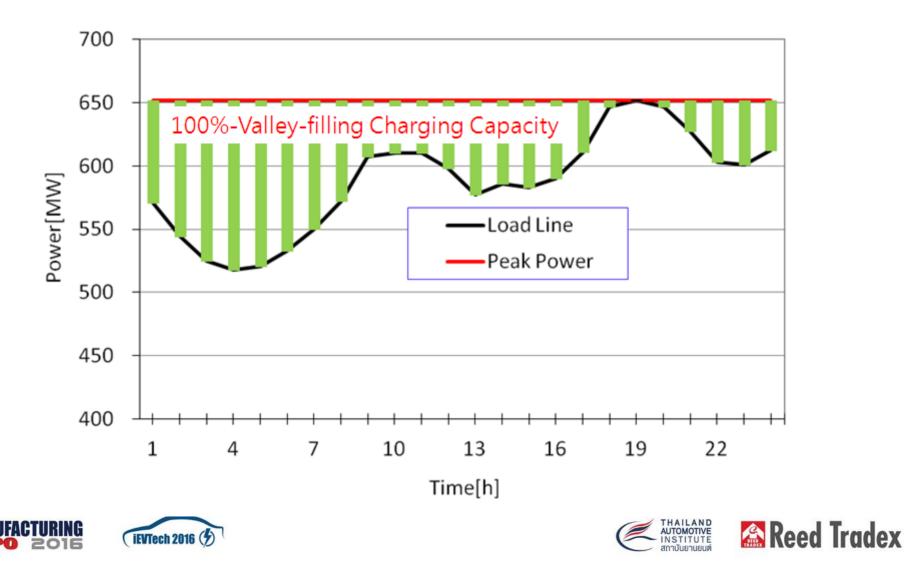
Co-organized by:





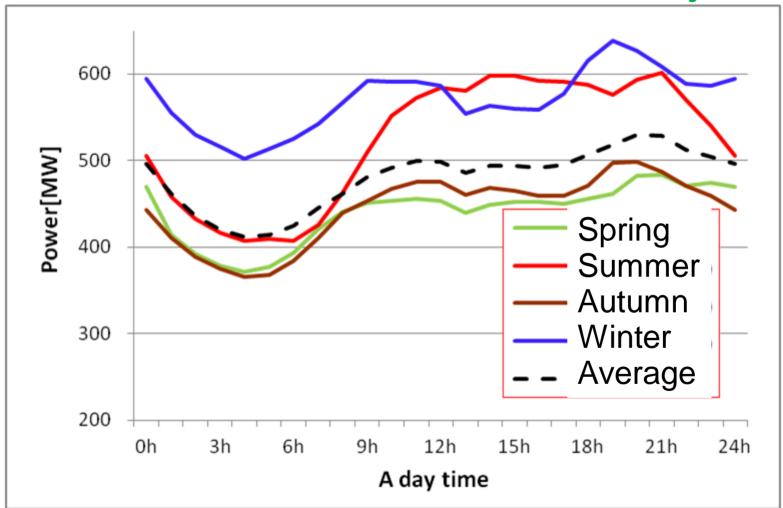
Electric Energy Consumed by EVs

The Concept of Smart Charging Capacity, in the Electric Energy Supplying System



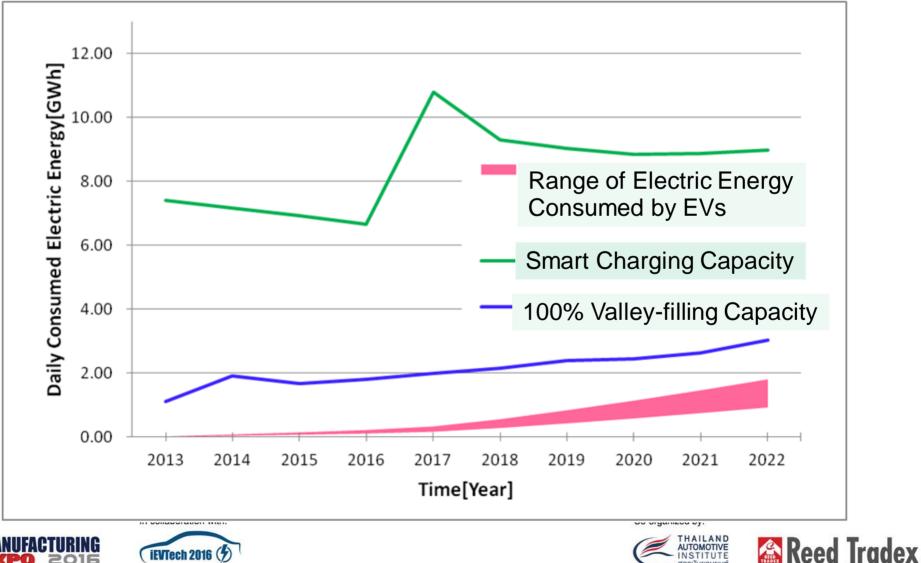
The Concept of 100% Valley-filling Charging Capacity, in the Electric Energy Supplying System

22-23 JUNE 2016



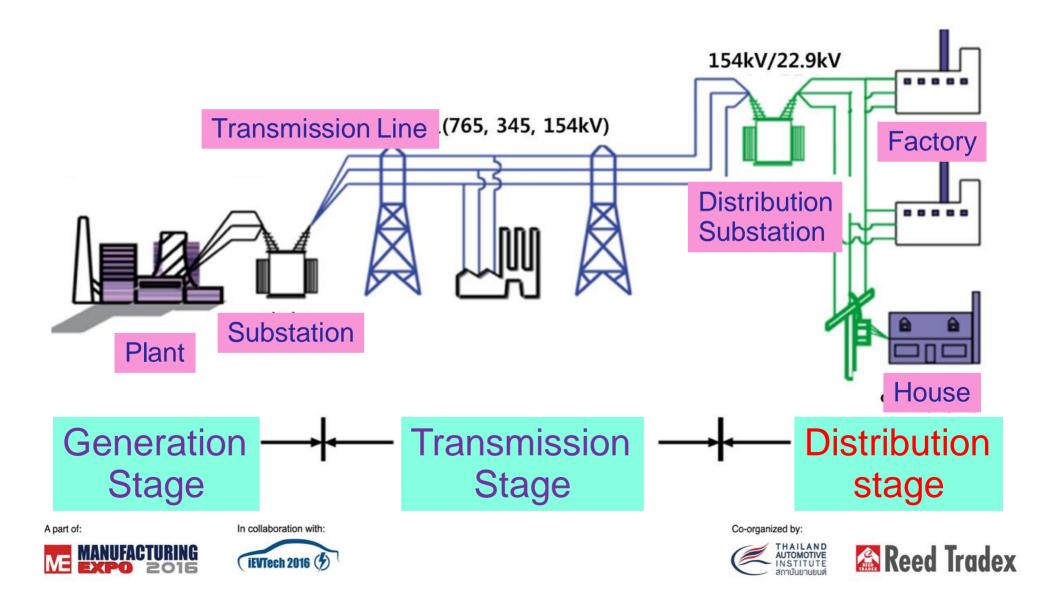
A part of:

4 Season Electric Load Lines in Jeju



Capacity of Electric Grid Supplying Electric Energy for EVs

22-23 JUNE 2016 BITEC · BANGKOK


สถาบับยาบยบต่

X Power Grid System Supplying Electric Energy

22-23 JUNE 2016

Conclusion 1

The calculation results show that

- the rate of the electric energy used by the EVs will become to maximally 2.3% of total electric energy consumed in Jeju at the 2017 year when the penetration rate of EVs in passenger cars becomes 10%,
- and the rate of the electric energy consumed by the EVs will become to maximally 7.8% of the total electric energy at the 2020 year when the penetration rate of EVs in passenger cars

A part of:

Conclusion 2

The study shows that

- We, present power grid, can supply electric energy for 30% EVs of whole passenger cars during midnight time without additive investing or constructing in the generation stage of the power grid,
- resultantly, we can save energy because we supply for EV the electric energy to be unused and abandon during midnight time and then we can decrease greenhouse gas.

Awareness

- Though in generation stage capacity supplying electric energy sufficient, in distribution stage capacity supplying electric energy may be insufficient.
- In building EV charging Infra, shortage of the distribution capacity may be a big obstacle and the capacity of distribution substations and transformers must be checked if they are sufficient or insufficient.

Thank President Yossapong Laoonual for invitation and giving the chance to greet you and introduce my study and opinion on EV.

A part of:

Co-organized by:

22-23 JUNE 2016

- 1991-present : Professor, Dept. of Electrical Eng.
- 2015-present : Dean of Electrical Engineering College
- 2007-2009 : Director of e-Learning Center of Jeju University
- 2007-2009 : Director of Information and Communication Center
- 2005-2006 : Visiting Scholar of UCLA
- 2003-2005 : Head of Small & Medium Business Support Center
- 1999-2000 : Consultant Prof. for Samsung Electrical Cooperation

Co-organized by:

22-23 JUNE 2016 BITEC · BANGKOK